首页>新闻资讯>行业动态

深入浅出讲解卡尔曼滤波(附Matlab程序)

发布时间:2019-07-17 10:28:18 浏览:13308

       简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

      在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!学过控制的应该都知道,卡尔曼是现代控制理论的奠基人!

      卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

      为了给大家能讲解清楚卡尔曼滤波器,我们找到两篇关于卡尔曼滤波器非常好的文章:

      第一篇来源于CSDN博客,为大家详细的讲解了卡尔曼的原理及应用,算作“深入”

      第二篇来源于知乎,用一个简单的例子,通俗易懂的讲解了卡尔曼滤波,算作“浅出”

       此外,关于卡尔曼滤波的仿真程序在EETOP论坛里有很多,大家可以登录论坛后搜索“卡尔曼”来查找。这里我们给大家提供了一个Matlab仿真程序,可以通过点击左下角的“阅读原文”进入论坛下载。


第一篇


     原文地址:http://blog.csdn.net/lanbing510/article/details/40936343

     1.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)
为了可以更加容易的理解卡尔曼滤波器,首先应用形象的描述方法来讲解,然后我们结合其核心的5条公式进行进一步的说明和探索。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子做个直观的解释。

     假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

     好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

     假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
    由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg=5^2/(5^2+4^2),所以Kg=0.6098,我们可以估算出k时刻的实际温度值是:23+0.6098*(25-23)=24.22度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
      现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.22度)的偏差。算法如下:

      ((1-Kg)*5^2)^0.5=3.12。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的3.12就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
        就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!
      下面就要言归正传,讨论真正工程系统上的卡尔曼。

       2. 卡尔曼滤波器算法(The Kalman Filter Algorithm)

        在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

         首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述,我们结合下面PPT截图进行说明:


      上两式子中,x(k)是k时刻的系统状态,u(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。y(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。q(k)和r(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

      对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。先给出KF算法的流程和五个核心更新方程如下:KF算法




五个更新方程为:


编写公式不方便,所以写成了PDF然后做了截图粘在了下面,下面就上面的例子和五个核心的公式对Kalman算法进行下说明:

就这样,算法就可以自回归的运算下去。

看到这聪明的同学可能已经看出来了,问道卡尔曼增益为什么会是第三步中那样求,现在只大致说一下原理,具体推到比较复杂,有兴趣的同学可以参考这文献去推一推。
还记得前面我们说的误差协方差矩阵$P_k$么,即求第k次最优温度的误差协方差矩阵,对应于上例中的3和3.12....这些值。看下面PPT,我们最小化P即可得到卡尔曼增益K,对应上例求解K只最小化最优温度值的偏差,即最小化P(K):

       我们由第四步可以看出,k时刻系统的最优温度值=k-1时刻状态估计值(由上一状态的最优温度值加上过程误差)+带卡尔曼增益权值项的偏差。如果观测误差远远大于估计误差,那么K就很小,k时刻的预测值约等于k时刻的状态估计值,如果对i时刻的状态估计值误差远远大于观测误差,此时相应的q较大,K较大,i时刻的状态估计值更倾向于观察的数据。

卡尔曼滤波器的原理基本描述就完成了,希望能帮助大家理解这这5个公式,其算法可以很容易的用计算机的程序实现。下面,我会用程序举一个实际运行的例子。

      3.简单例子(A Simple Example)
这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。
根第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以u(k)=0。因此得出:
x(k|k-1)=x(k-1|k-1) ……… (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q ……… (7)
因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)


第二篇

考虑轨道上的一个小车,无外力作用,它在时刻t的状态向量只与相关:
(状态向量就是描述它的t=0时刻所有状态的向量,比如:
[速度大小5m/s, 速度方向右, 位置坐标0],反正有了这个向量就可以完全预测t=1时刻小车的状态)

那么根据t=0时刻的初值,理论上我们可以求出它任意时刻的状态。
当然,实际情况不会这么美好。
这个递推函数可能会受到各种不确定因素的影响(内在的外在的都算,比如刮风下雨地震,小车结构不紧密,轮子不圆等等)导致并不能精确标识小车实际的状态。
我们假设每个状态分量受到的不确定因素都服从正态分布。
现在仅对小车的位置进行估计
请看下图:t=0时小车的位置服从红色的正态分布。

根据小车的这个位置,我们可以预测出t=1时刻它的位置:


分布变“胖”了,这很好理解——因为在递推的过程中又加了一层噪声,所以不确定度变大了。
为了避免纯估计带来的偏差,我们在t=1时刻对小车的位置坐标进行一次雷达测量,当然雷达对小车距离的测量也会受到种种因素的影响,于是测量结果告诉我们,小车t=1时的位置服从蓝色分布:


好了,现在我们得到两个不同的结果。前面有人提过加权,Kalman老先生的牛逼之处就在于找到了相应权值,使红蓝分布合并为下图这个绿色的正态分布(啰嗦一句,这个绿色分布均值位置在红蓝均值间的比例称为Kalman增益(比如下图中近似0.8),就是各种公式里的K(t))

你问为什么牛逼?
绿色分布不仅保证了在红蓝给定的条件下,小车位于该点的概率最大,而且,而且,它居然还是一个正态分布!
正态分布就意味着,可以把它当做初值继续往下算了!这是Kalman滤波能够迭代的关键。
最后,把绿色分布当做第一张图中的红色分布对t=2时刻进行预测,算法就可以开始循环往复了。
你又要问了,说来说去绿色分布是怎么得出的呢?
其实可以通过多种方式推导出来,我们课上讲过的就有最大似然法、Ricatti方程法,以及上面参考文献中提及的直接对高斯密度函数变形的方法,这个不展开说了。

关注手机微信

联系电话

029-88814881
88814882 / 88814883

Copyright © 2018 西安精准测控有限责任公司 All Rights Reserved.  陕ICP备12005193号

技术支持/名远科技